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Abstract

This paper presents adaptive resource sharing model
that uses a revenue criterion to allocate network resources
in an optimal way. The model ensures QoS requirements
of data flows and, at the same time, maximizes the total
revenue by adjusting parameters of the underlying sched-
uler. Besides, the adaptive model eliminate the need to find
the optimal static weight values because they are calculated
dynamically. The simulation consists of several cases that
analyse the model and the way it provides the required QoS
guarantees. The simulation reveals that the installation of
the adaptive model increases the total revenue and ensures
the QoS requirements for all service classes.

1. Introduction

Today’s Internet supports QoS for the flows that are sen-
sitive to effects like delay and jitter. It must ensure that
all the flows receive their reserved resources while QoS is
also maintained. To ensure this, there must be mechanisms
to give guaranteed bandwidth and computational resources
to incoming flows. However, allocation of bandwidth and
CPU resources are interdependent and maintaining fairness
in one resource allocation does not necessarily entail fair-
ness in another resource allocation. Therefore, for better
maintenance of QoS guarantees and overall fairness in re-
source allocations for the contending flows, the processor
and bandwidth scheduling schemes should be integrated.
A significant amount of work has been done in resource
scheduling for traditional networks.

The fair allocation of bandwidth is typically achieved by
using per-flow queueing mechanisms that are complex to
implement such as Fair Queueing [3], [10] and its many
variants [4], [1], [5]. However, these mechanisms require
that each arriving packet has to be classified into a flow and
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Figure 1. Four edge node system, with two
ingress and egress nodes.

the router must perform several operations based on the up-
dated per-flow state variables. Several methods have been
presented to reduce the complexity of the per packet oper-
ations, such as [12], [13], [6], [15], [9], [11] and [17]. In
[14] the complexity is localized in the edge routers, where
the per-flow information is computed, while the core routers
just use first-in-first-out (FIFO) queueing and keep no per-
flow state. However, it still remains unclear if these algo-
rithms can be cost-effectively implemented.

In this paper we present a low complexity packet
scheduling algorithm (to be used e.g. in edge routers)
for allocation a fair share of bandwidth to different ser-
vice classes while providing optimal revenue to the service
provider. We extend our previous studies [8, 7], where delay
was considered as QoS parameter.

The rest of the paper is organized as follows. Section
2 discusses network model and bandwidth formulation. In
Section 3 the pricing function and the optimal weights for
revenue maximization is presented. The next section 5 con-
siders implementation issues and computational complex-
ity. In Section 6 the operation of the algorithm is simulated.
Finally, the conclusions are discussed in Section 7.



2. Multinode Network and Bandwidth

In this section, we formulate expression for bandwidth
(bit rate) of the data traffic in the multinode network. Al-
though the algorithm operates in the general multinode sys-
tem with arbitrary number of nodes, we present it by using
the four node case to avoid complicated notation. Consider
a network with four edge nodes (Fig. 1). Data are trans-
mitted from nodes 1 and 2 to either nodes 3 and 4. The
customers of the gold class pay more than the customers of
the silver and bronze classes - in our case for the available
bandwidth - but on the other hand, they get more bandwidth.

There are three service classes, namely gold, silver, and
bronze.

There are two types of connections in the jth queue in
the node 1. They are denoted by N1→3

j and N1→4
j . No-

tation N i→p
j means that there are N i→p

j such connections
(customers) in the jth queue which transfers data through
nodes i and p. Total number of connections in the node i
and queue j is denoted by Nij , and it obeys the condition

Nij =
n∑

p=1

N i→p
j , (1)

where n denotes number of the nodes. In our example case,
n = 4, and

N1j = N1→3
j + N1→4

j , (2)

N2j = N2→3
j + N2→4

j , (3)

N3j = N1→3
j + N2→3

j , (4)

N4j = N1→4
j + N2→4

j . (5)

Here e.g. N1→2
1 = 0.

Let us consider the bandwidth in the node i. Let the
processing time of the data be T [seconds/bit] in the packet
scheduler. There are Nij connections or packets in the class
j. Let us denote the packet size bijk [bits] or [kbytes] in the
node i, i = 1, . . . , n, class j = 1, . . . , m and the connec-
tion k = 1, . . . , Nij . Variable wij is the weight allocated
for class j in the node i. Constraint for weights wij is

m∑

j=1

wij = 1, wij > 0. (6)

Variables wij give weights, how long time queues (i, j) are
served per total time. It is easy to see that bandwidth of the
packet (i, j, k) is

• linearly proportional to the packet size bijk,

• linearly proportional to the weight wij ,

• inversely proportional to the processing time T , and

• inversely proportional to the total sum of the packet
lengths bijk, k = 1, . . . , Nij , because other packets
occupy the same band in a time-divided manner.

Therefore, the expression for the bandwidth of the packet
(i, j, k) is

Bijk[bits/s] =
bijkwij

T
∑Nij

l=1 bijl

=
bijkwij∑Nij

l=1 bijl

(7)

where the processing time T in the denominator can be
scaled T = 1, without loss of generality. If processing times
differ from node to node, notation is more complicated, but
there is no critical difference on our formalism.

3. Pricing Model and Revenue Optimization

We concentrate on the pricing and fair resource alloca-
tion from the point of view of the customers. On the other
hand, from the point of view of the service provider, we
try to maximize revenue. First, we introduce the concept
of pricing function. Naturally, the price is usually concave
with respect to the bandwidth; for example, when images
are transferred, the price may be twice compared to the price
when voice is transferred, while the bandwidth ratio - image
bandwidth/voice bandwidth - is much more than two.

Consider the price paid by customers in class j to the
service provider. It depends on the bit rate. The price rj(B)
is increasing with respect to the bit rate B, and it is concave.
We use the polynomial pricing model, because using that
model, one can get a closed form approximating solution
and the model is increasing and concave.

Definition. The pricing model

rj(B) = rjB
p, (8)

where B is the bandwidth,

rj > 0, (9)

p ∈ (0, 1) (concavity) (10)

is polynomial.
When connection (i, j, k) in the node i in class j obtains

the bandwidth Bijk, he/she is paying

rj(Bijk) = rj

(
bijkwij∑Nij

l=1 bijl

)p

(11)

units of money per second to the service provider.
Bit rate in the multinode system is the same as the bit

rate at the weakest point. Therefore, revenue obtained from
the connection (i, j, k) in our four node system is

F i→q
jk = rj min

{
bijkwij∑Nij

l=1 bijl

,
bqjkwqj∑Nqj

l=1 bqjl

}p

. (12)



Here, F i→q
jk denotes revenue for jth class and kth packet,

which passes through nodes i and q. Using Lagrangian con-
straint, total revenue is

F = F 1→3 + F 1→4 + F 2→3 + F 2→4

+
4∑

i=1

λi(1−
3∑

j=1

wij)

=
3∑

j=1

N1→3
j∑

k=1

F 1→3
jk

+
3∑

j=1

N1j∑

k=N1→3
j

+1

F 1→4
jk

+
3∑

j=1

N2→3
j∑

k=1

F 2→3
jk

+
3∑

j=1

N2j∑

k=N2→3
j

+1

F 2→4
jk

+
4∑

i=1

λi(1−
3∑

j=1

wij). (13)

When minimum operators are taken from (13), revenue re-
duces to the general form

F =
n∑

i=1

m∑

j=1

Nij∑

k=1

aijkwp
ij +

n∑

i=1

λi(1−
m∑

j=1

wij), (14)

where general parameters are as follows: n is the num-
ber of nodes, m is the number of service classes, and
aijk > 0 is known parameter, being a function of rj , bijk,
and

∑Nij

l=1 bijl.

4. Bandwidth Broker Algorithm

Here we present the bandwidth broker algorithm for ap-
proximating optimal solutions for maximizing revenue still
allocating bandwidth in a fair way. In the simplest ap-
proach, called BB1, it is assumed that the bit rates in the
minimum operation brackets are roughly the same, i.e.

min

{
b111w11∑N11

l=1 b11l

,
b311w31∑N31

l=1 b31l

}

≈ 1
2

(
b111w11∑N11

l=1 b11l

+
b311w31∑N31

l=1 b31l

)
(15)

etc. for all operations in (13). Then the revenue can be
linearized, and approximated as follows:

F = r1

N1→3
1∑

k=1

min{B11k, B31k}p

+ r1

N11∑

k=N1→3
1 +1

min{B11k, B41k}p

+ . . .

+
4∑

i=1

λi(1−
3∑

j=1

wij)

≈ 1
2
r1

N11∑

k=1

(
b11kw11∑N11

l=1 b11l

)p

+ . . .

=
1
2

n∑

i=1

m∑

j=1

rj

Nij∑

k=1

(
bijkwij∑Nij

l=1 bijl

)p

+
n∑

i=1

λi(1−
m∑

j=1

wij), (16)

where last expression is obtained by taking account of
equalities (2)-(5). In that case, wij :s can be directly eval-
uated by treating F as a simple linear constrained optimiza-
tion problem as in the previous section. Weights have the
closed form solution

wij =
r
− 1

p−1
j

[∑Nij

k=1

(
bijk∑Nij

l=1
bijl

)p]− 1
p−1

∑m
q=1 r

− 1
p−1

q

[∑Niq

s=1

(
biqs∑Niq

h=1
biqh

)p]− 1
p−1

(17)

∂2F

∂w2
ij

< 0, p ∈ (0, 1) (global optimum for (16)) (18)

As a special case, we consider square root pricing scenario,
where p = 1

2 . Then

wij =

r2
j

(
∑Nij

k=1

√
bijk∑Nij

l=1
bijl

)2

∑m
q=1 r2

q

(
∑Niq

s=1

√
biqs∑Niq

h=1
biqh

)2 (19)

BB1 algorithm has an important advantage that it allows
local updating in the nodes, because in calculation of wij

only the parameters of the node i are used:

• Gain factors r1, . . . , rm are same for all nodes,

• Packet lengths bijk are defined for node i.

In the previous derivation, every minimum operation in-
cluded exactly two arguments. In the general case, there
are different number of arguments in the minimum opera-
tion. This changes the form of the approximated revenue
formula in such a way that there are other scaling factors
than 1

2 ; however, it is still a linearly constrained optimiza-
tion formula yielding a closed form solution.
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Figure 2. Evolution of number of connections
in node 2.

5. Implementation Issues and Computational
Complexity

We have selected edge routers of the DiffServ architec-
ture [2] for implementation target to our adaptive model.
In this case, all major adaptive issues will be implemented
at the edge of a domain. Unlike the core routers, the edge
routers have the per-flow information that enables them to
perform classification and policing. Since data regarding
each traffic flow is available, it is much more convenient
to perform the adaptive resource allocation in this part of
a DiffServ domain. In this framework, the core routers
could remain intact and are not overburdened with addi-
tional adaptive software that can slow the packet forward-
ing process. Moreover, such an approach fits into the orig-
inal idea of the DiffServ technology which states that the
edge routers perform sophisticated functions while the core
routers perform only the simple forwarding.

In the proposed adaptive framework, the key role of the
adaptive egress routers is to control the amount of traffic
injected into a DiffServ domain. By tracking the number
of active data flows and their Quality of Service (QoS) pa-
rameters, the adaptive edge routers can allocate optimally
the output bandwidth between different traffic aggregates.
Of course, this solution does not diminish the use of other
adaptive solutions that could be implemented in the core
routers to provide finer resource allocation and to achieve
better utilization [16]. Assume that there are n nodes, and
that the user’s data packets go on the average through q
nodes. There are m service classes. Consider the compu-
tation in the BB1 algorithm. When weight wij is updated
according to the rule (17), no iterations are needed. To cal-
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Figure 3. Weights - Evolution of the weights
as a function of time for both the optimal
weights (smoother lines) and “brute-force”
weights (angled lines).

culate numerator, four operations are needed. To calculate
denominator, O(m) operations are needed. Thus, about 10
operations are needed, when m is small.

6. *

Simulations
In this section we demonstrate by simulation the opera-

tion of the square root pricing function (8) with m = 3 ser-
vice classes (gold, silver and bronze) and four nodes (two
ingress and two egress). We compare the optimal weights
(17) with a version of the algorithm that obtains the weights
by “brute-force” method, for which the possible values for
the weights are wij = 0.1, . . . , 0.8 (i.e. the step size is 0.1).
We present the weights for all the nodes using both opti-
mal weights and ”brute force” weights. The connections
in the different service classes have different average data
packet sizes E(b1) = 50, E(b2) = 25 and E(b3) = 10,
with a standard deviation of 1 (i.e. in a specific service
class the connections have similar demand for bandwidth).
The processing time of each packet scheduler is chosen as
T = 1/10000 s/kbyte. The arrival rates of the connections
to the nodes 1 and 2 are Poisson distributed and they are
α1 = 0.30, α2 = 0.40 and α3 = 0.50 per unit time for the
gold, silver, and bronze classes, respectively. Each connec-
tion has equal probability of being routed to egress node 3
or 4.

The life time of a connection (i.e. the time the connec-
tion is served and has packets in the queue) is exponentially
distributed. The duration parameters (i.e. “decay rates”) for
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Figure 4. Evolution of number of connections
in node 2.

the connections are β1 = 0.01, β2 = 0.007 and β3 = 0.003,
where the probability density functions for the durations are

pi(t) = βie
−βit, , i = 1, 2, 3 t ≥ 0. (20)

We run both the ”brute-force” simulation and the optimal
weights simulation with the same parameters so that gives
us a good possibility to compare the results. In both cases
the number of connections are shown in Fig. 4. For the rest
of the nodes and for all the ”brute force” nodes, the results
concerning the number of connections are quite similar to
the results in Fig 4. In Fig. 5 we have mean bandwidth
for the classes in node 2 for the optimal weights and the
mean bandwidth for ”brute-force” is shown in Fig. 6. The
slight difference between the mean bandwidth for optimal
weights and the ”brute-force” is derived straight from the
weights which are calculated for the classes (Fig. 7). The
behavior is similar in all the nodes when we study the mean
bandwidth for the classes.

The difference between the two methods is clearly seen
when we look at Fig. 7 which shows the optimal weights
and ”brute force” weights in node 2. The weights in nodes
1, 3 and 4 are again behaving quite similar with the weights
in node 2. From Fig. 7 we can also see that the optimal
weights behave smoothly while the ”brute-force” weights
make quite sudden changes. The behavior of the ”brute-
force” weights comes straight from the definition where we
specify the step size. By reducing the step size we would get
smoother behavior for the ”brute-force” but at the same time
we would increase the computation time dramatically. If we
have in ”brute-force” method weights wij = 0.1, . . . , 0.8
for all the four nodes we have to make 364 = 1.679.616
loops to find out the best weights. We can limit the possible

weights to a certain range in order to lower the computation
time. For example limiting the lowest weight for the gold
to be 0.4 and the lowest weight for the silver class to be 0.2,
we can decrease the number of loops to 154 = 50.625. This
needs still a lot of computation time compared to optimal
weights. In the simulation environment the ”brute-force”
method with limited range required 1000 times more com-
putation time compared to the optimal weights method.

In Fig. 8 we have the revenues for both methods. The
optimal weighs revenue has the upper one or green line and
the ”brute-force” has the lower, blue line. The mean rev-
enues for 7757.9 and 7724.2 for optimal and ”brute-force”
weights, respectively. This slight 0.5% difference can be
seen in Fig. 9 but the result has been gained with a signifi-
cantly lower computational time.

7. Discussion and Concluding Remarks

We have derived an analytic form to the revenue algo-
rithm for updating the weights wij which allocate data traf-
fic to the connections of different service classes in a multin-
ode network. The weight updating procedure of the packet
schedulers has low computational complexity and is robust
against errors that may occur from inaccurate models as it
is deterministic and nonparametric. Also, the weight up-
dating rule has an important advantage that it allows local
updating in the nodes. We have shown by simulation that
our algorithm gives larger revenue and allocates bandwidth
in a fairer way than the brute-force algorithm.
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Figure 5. Optimal weights - Evolution of mean
bandwidth for all the three classes in node 2.
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Figure 6. ”Brute-force” - Evolution of mean
bandwidth for all the three classes in node 2.
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Figure 7. Weights - Evolution of the weights
as a function of time for both the optimal
weights (smoother lines) and ”brute-force”
weights (angled lines).
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Figure 8. Revenue - Evolution of the revenue
as a function of time for both the optimal
weights (upper, green line) and ”brute-force”
weights (lower, blue line).
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